Skip to content

Implement Bootstrapping and confidence itnervals #11

@kslote1

Description

@kslote1

Bootstrap Methods

Bootstrap Confidence Intervals

Procedure:

  1. Generate (B) bootstrap samples ({(\mathbf{X}^{(b)}, \mathbf{Y}^{(b)})}_{b=1}^B)
  2. Compute ({\hat{I}^{(b)}}_{b=1}^B) for each bootstrap sample
  3. Construct confidence interval:

$$ [\hat{I}_{(\alpha/2)}, \hat{I}_{(1-\alpha/2)}] $$


Time Series Bootstrap

Standard bootstrap assumes i.i.d. data. For time series, specialized methods are needed.

Block Bootstrap:

$$ \text{Bootstrap Sample} = [B_1, B_2, \ldots, B_k] $$

where (B_i) are overlapping blocks of length (l).

Stationary Bootstrap:
Uses random block lengths with a geometric distribution to preserve temporal dependence.


Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions