diff --git a/notebooks/06_sklearn/06_machine_learning_sckit_learn.ipynb b/notebooks/06_sklearn/06_machine_learning_sckit_learn.ipynb index ac42d02..6f30538 100644 --- a/notebooks/06_sklearn/06_machine_learning_sckit_learn.ipynb +++ b/notebooks/06_sklearn/06_machine_learning_sckit_learn.ipynb @@ -491,6 +491,27 @@ "iris_df" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "y visualizamos" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import seaborn as sns; \n", + "sns.set(style=\"ticks\", color_codes=True)\n", + "sns.pairplot(iris_df, hue=\"species\")\n", + "\n", + "# Nota--> ayuda sobre alguna función...\n", + "#? sns.pairplot" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -533,23 +554,6 @@ "Hay muchas más tareas de preprocesamiento que se pueden hacer en scikit-learn. **Consulta el paquete sklearn.preprocessing**.\n" ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "scrolled": false - }, - "outputs": [], - "source": [ - "import seaborn as sns; \n", - "sns.set(style=\"ticks\", color_codes=True)\n", - "iris = sns.load_dataset(\"iris\")\n", - "sns.pairplot(iris, hue=\"species\")\n", - "\n", - "# Nota--> ayuda sobre alguna función...\n", - "#? sns.pairplot" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -1325,7 +1329,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.5" + "version": "3.6.6" } }, "nbformat": 4,