Skip to content

Derivative models #22

@dfm

Description

@dfm

I've implemented a first pass at derivative models but there are some open questions so I'm going to remove it from #19 and just post it here for future work:

Details
class _DerivativeHelperTerm(terms.Term):
    def __init__(self, term):
        self.term = term

    def get_coefficients(self):
        coeffs = self.term.get_coefficients()
        a, b, c, d = coeffs[2:]
        final_coeffs = [
            -coeffs[0] * coeffs[1],
            coeffs[1],
            b * d - a * c,
            -(a * d + b * c),
            c,
            d,
        ]
        return final_coeffs


class DerivativeLatentTerm(LatentTerm):
    def __init__(self, term, *, value_amplitude, gradient_amplitude):
        if term.__requires_general_addition__:
            raise TypeError(
                "You cannot perform operations on a term that requires general"
                " addition, it must be the outer term in the kernel"
            )

        val_amp = np.atleast_1d(value_amplitude)
        grad_amp = np.atleast_1d(gradient_amplitude)
        if val_amp.ndim != 1 or val_amp.shape != grad_amp.shape:
            raise ValueError("Dimension mismatch between amplitudes")
        amp = np.stack((val_amp, grad_amp), axis=-1)
        M = amp.shape[0]

        ar, cr, ac, bc, cc, dc = term.get_coefficients()

        Jr = len(cr)
        Jc = len(cc)
        J = Jr + 2 * Jc

        left = np.zeros((2, 4 * J))
        right = np.zeros((2, 4 * J))
        if Jr:
            left[0, :Jr] = 1.0
            left[0, 2 * Jr : 3 * Jr] = -1.0
            left[1, Jr : 2 * Jr] = 1.0
            left[1, 3 * Jr : 4 * Jr] = 1.0
            right[0, : 2 * Jr] = 1.0
            right[1, 2 * Jr : 4 * Jr] = 1.0

        if Jc:
            J0 = 4 * Jr
            for J0 in [4 * Jr, 4 * Jr + 4 * Jc]:
                left[0, J0 : J0 + Jc] = 1.0
                left[0, J0 + 2 * Jc : J0 + 3 * Jc] = -1.0
                left[1, J0 + Jc : J0 + 2 * Jc] = 1.0
                left[1, J0 + 3 * Jc : J0 + 4 * Jc] = 1.0
                right[0, J0 : J0 + 2 * Jc] = 1.0
                right[1, J0 + 2 * Jc : J0 + 4 * Jc] = 1.0

        self.left = np.dot(amp, left)[:, :, None]
        self.right = np.dot(amp, right)[:, :, None]

        # self.left = np.empty((M, 4 * J, 1))
        # self.left[:] = np.nan
        # self.left[:] = np.dot(amp, left)[:, :, None]

        # self.right = np.zeros((M, 4 * J, M))
        # right = np.dot(amp, right)
        # for m in range(M):
        #     self.right[m, :, m] = right[m]

        # self.left = np.reshape(self.left, (M, -1, 1))
        # self.right = np.reshape(self.right, (M, -1, 1))

        print(self.left)
        print(self.right)
        # print(self.right)
        # assert 0

        dterm = _DerivativeHelperTerm(term)
        d2term = terms.TermDiff(term)
        super().__init__(
            terms.TermSum(term, dterm, dterm, d2term),
            dimension=2,
            left_latent=self._left_latent,
            right_latent=self._right_latent,
        )

    def _left_latent(self, t, inds):
        return self.left[inds]

    def _right_latent(self, t, inds):
        return self.right[inds]

Metadata

Metadata

Assignees

No one assigned

    Labels

    enhancementNew feature or request

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions