From 5341ed1a17dc127a99aa9056e36a69c58961f009 Mon Sep 17 00:00:00 2001 From: Chrissy Date: Mon, 29 Dec 2025 14:09:20 -0500 Subject: [PATCH] alt text and long description in Michigan/Chap4Sec7/Q01 --- OpenProblemLibrary/Michigan/Chap4Sec7/Q01.pg | 22 +++++++++----------- 1 file changed, 10 insertions(+), 12 deletions(-) diff --git a/OpenProblemLibrary/Michigan/Chap4Sec7/Q01.pg b/OpenProblemLibrary/Michigan/Chap4Sec7/Q01.pg index 1392e0a438..e8f74b4cc5 100644 --- a/OpenProblemLibrary/Michigan/Chap4Sec7/Q01.pg +++ b/OpenProblemLibrary/Michigan/Chap4Sec7/Q01.pg @@ -89,20 +89,19 @@ $gr2->lb( new Label(2,-0.17,"a","black","top","center") ); foreach my $i ( 0, 1, 2, 3 ) { if ( $whichf[$i] == 1 ) { $f[$i] = Compute("x-2"); - $desc[$i] = "a COL line with positive slope passing through (a,0)"; + $desc[$i] = "a COL line with positive slope passing through \((a,0)\)"; } elsif ( $whichf[$i] == 2 ) { $f[$i] = Compute("2-x"); - $desc[$i] = "a COL line with negative slope passing through (a,0)"; + $desc[$i] = "a COL line with negative slope passing through \((a,0)\)"; } elsif ( $whichf[$i] == 3 ) { $f[$i] = Compute("4-2*x"); - $desc[$i] = "a COL line with a large negative slope passing through " . - "(a,0)"; + $desc[$i] = "a COL line with a large negative slope passing through \((a,0)\)"; } elsif ( $whichf[$i] == 4 ) { $f[$i] = Compute("(x-2)^2"); - $desc[$i] = "a COL parabola opening upward with vertex (a,0)"; + $desc[$i] = "a COL parabola opening upward with vertex \((a,0)\)"; } else { $f[$i] = Compute("-(x-2)^2"); - $desc[$i] = "a COL parabola opening downward with vertex (a,0)"; + $desc[$i] = "a COL parabola opening downward with vertex \((a,0)\)"; } $df[$i] = $f[$i]->D(); $d2f[$i] = $df[$i]->D(); @@ -163,10 +162,10 @@ as the black curve. $PAR $BCENTER \{ begintable(2) \} -\{ row( image( insertGraph( $gr1 ), height=>250, width=>250, tex_size=>250, - extra_html_tags=>'alt="' . $grDesc[0] . '"' ), - image( insertGraph( $gr2 ), height=>250, width=>250, tex_size=>250, - extra_html_tags=>'alt="' . $grDesc[1] . '"' ) ) \} +\{ row( image( insertGraph( $gr1 ), height=>250, width=>250, tex_size=>250,alt=>"Graph of two functions with value 0 when x=a", + long_description=>"$grDesc[0]" ), + image( insertGraph( $gr2 ), height=>250, width=>250, tex_size=>250,alt=>"Graph of two functions with value 0 when x=a", + long_description=>"$grDesc[1]" ) ) \} \{ row( "\(\displaystyle \lim_{x\to a}\,\frac{f(x)}{g(x)} =\)" . $lim[0]->menu(), "\(\displaystyle \lim_{x\to a}\,\frac{f(x)}{g(x)} =\)" . @@ -181,8 +180,7 @@ ANS( $lim[0]->cmp() ); ANS( $lim[1]->cmp() ); Context()->texStrings; -SOLUTION(EV3(<<'END_SOLUTION')); -$PAR SOLUTION $PAR +BEGIN_SOLUTION In either case, we use l'Hopital's rule, \[ \lim_{x\to a} \frac{f(x)}{g(x)} = \frac{f'(a)}{g'(a)}. \]