diff --git a/OpenProblemLibrary/Michigan/Chap4Sec1/Q03.pg b/OpenProblemLibrary/Michigan/Chap4Sec1/Q03.pg index 229ae516dc..acd56fb9b8 100644 --- a/OpenProblemLibrary/Michigan/Chap4Sec1/Q03.pg +++ b/OpenProblemLibrary/Michigan/Chap4Sec1/Q03.pg @@ -114,7 +114,7 @@ Use a graph below of \( f(x) = $func \) to estimate the \( x \)-values of any critical points and inflection points of \( f(x) \). $PAR -\{ image( insertGraph( $graph ), 'tex_size'=>500 ) \} +\{ image( insertGraph( $graph ), 'tex_size'=>500, alt=>"Graph of a function" ) \} $PAR critical points (enter as a comma-separated list): \( x = \) \{ ans_rule(25) \} @@ -143,7 +143,6 @@ ANS(number_list_cmp( $ip ) ); Context()->texStrings; BEGIN_SOLUTION -$PAR SOLUTION $PAR From the graph, we see that \( f(x) \) appears to have one critical point, at \(x=0\), and two inflection points, one