We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
There was an error while loading. Please reload this page.
1 parent 07d2a95 commit b5eedc7Copy full SHA for b5eedc7
README.md
@@ -35,6 +35,8 @@ PPO and PPO_CNN agents playing Pong-v0 game:<br>
35
11. [Introduction to RL Proximal Policy Optimization algorythm (PPO)](https://pylessons.com/PPO-reinforcement-learning/)
36
37
12. [Let’s code from scratch a discrete Reinforcement Learning rocket landing agent! (PPO)](https://pylessons.com/LunarLander-v2-PPO/)
38
+
39
+13. [Continuous Proximal Policy Optimization Tutorial with OpenAI gym environment! (PPO)](https://pylessons.com/BipedalWalker-v3-PPO/)
40
<br><br>
41
PPO Pong-v0 Learning curve:
42
<img src="11_Pong-v0_PPO/Pong-v0_APPO_0.0001_RMSprop.png" data-canonical-src="11_Pong-v0_PPO/Pong-v0_APPO_0.0001_RMSprop.png" width="500" height="300" />
0 commit comments