diff --git a/imblearn/ensemble/_easy_ensemble.py b/imblearn/ensemble/_easy_ensemble.py index afd0cae22..ef6fe3768 100644 --- a/imblearn/ensemble/_easy_ensemble.py +++ b/imblearn/ensemble/_easy_ensemble.py @@ -226,7 +226,7 @@ def _validate_y(self, y): self._sampling_strategy = self.sampling_strategy return y_encoded - def _validate_estimator(self, default=AdaBoostClassifier(algorithm="SAMME")): + def _validate_estimator(self, default=AdaBoostClassifier()): """Check the estimator and the n_estimator attribute, set the `estimator_` attribute.""" if self.estimator is not None: diff --git a/imblearn/over_sampling/_smote/base.py b/imblearn/over_sampling/_smote/base.py index c008a95e6..8236a58c0 100644 --- a/imblearn/over_sampling/_smote/base.py +++ b/imblearn/over_sampling/_smote/base.py @@ -30,7 +30,7 @@ from ...metrics.pairwise import ValueDifferenceMetric from ...utils import Substitution, check_neighbors_object, check_target_type from ...utils._docstring import _random_state_docstring -from ...utils._sklearn_compat import _get_column_indices, _is_pandas_df, validate_data +from ...utils._sklearn_compat import _get_column_indices, is_pandas_df, validate_data from ...utils._validation import _check_X from ..base import BaseOverSampler @@ -557,7 +557,7 @@ def _check_X_y(self, X, y): def _validate_column_types(self, X): """Compute the indices of the categorical and continuous features.""" if self.categorical_features == "auto": - if not _is_pandas_df(X): + if not is_pandas_df(X): raise ValueError( "When `categorical_features='auto'`, the input data " f"should be a pandas.DataFrame. Got {type(X)} instead." diff --git a/imblearn/utils/_sklearn_compat.py b/imblearn/utils/_sklearn_compat.py index 4828a9a6a..80025c0d9 100644 --- a/imblearn/utils/_sklearn_compat.py +++ b/imblearn/utils/_sklearn_compat.py @@ -240,7 +240,7 @@ def _raise_for_params(params, owner, method): f" details. Extra parameters passed are: {set(params)}" ) - def _is_pandas_df(X): + def is_pandas_df(X): """Return True if the X is a pandas dataframe.""" try: pd = sys.modules["pandas"] @@ -255,7 +255,7 @@ def _is_pandas_df(X): ) from sklearn.utils.validation import ( _is_fitted, # noqa: F401 - _is_pandas_df, # noqa: F401 + is_pandas_df, # noqa: F401 ) diff --git a/imblearn/utils/_validation.py b/imblearn/utils/_validation.py index e5c310b20..677909e74 100644 --- a/imblearn/utils/_validation.py +++ b/imblearn/utils/_validation.py @@ -17,7 +17,7 @@ from sklearn.utils.multiclass import type_of_target from sklearn.utils.validation import _num_samples -from ..utils._sklearn_compat import _is_pandas_df, check_array +from ..utils._sklearn_compat import is_pandas_df, check_array SAMPLING_KIND = ( "over-sampling", @@ -639,7 +639,7 @@ def _check_X(X): raise ValueError( f"Found array with {n_samples} sample(s) while a minimum of 1 is required." ) - if _is_pandas_df(X): + if is_pandas_df(X): return X return check_array( X, dtype=None, accept_sparse=["csr", "csc"], ensure_all_finite=False