Status: ✅ Production Ready - All 66 Tasks Complete
Train positioning library for processing GNSS data by projecting positions onto railway track netelements (track axis centerlines). Developed for Infrabel infrastructure management.
- 🚄 High Performance: R-tree spatial indexing for O(log n) nearest-track search
- 📍 Accurate Projection: Haversine distance and geodesic calculations with geo-rs
- 🌍 CRS Aware: Explicit coordinate reference system handling (EPSG codes)
- ⏰ Timezone Support: RFC3339 timestamps with explicit timezone offsets
- 📊 Multiple Formats: CSV and GeoJSON input/output
- 🧪 Well Tested: 84 comprehensive tests (all passing) - unit, integration, contract, CLI, and doctests
- ⚡ Production Ready: Full CLI interface with validation and error handling
tp-lib/ # Rust workspace root
├── tp-core/ # Core Rust library
│ ├── src/
│ │ ├── models/ # Data models (GnssPosition, Netelement, ProjectedPosition)
│ │ ├── projection/ # Projection algorithms (geom, spatial indexing)
│ │ ├── io/ # Input/output (CSV, GeoJSON, Arrow)
│ │ ├── crs/ # Coordinate reference system transformations
│ │ ├── temporal/ # Timezone handling utilities
│ │ └── errors.rs # Error types
│ ├── tests/
│ │ ├── unit/ # Unit tests
│ │ └── integration/ # Integration tests
│ └── benches/ # Performance benchmarks
├── tp-cli/ # Command-line interface
└── tp-py/ # Python bindings (PyO3)
- Rust 1.91.1+ (install from rustup.rs)
- Python 3.12+ (for Python bindings)
# Clone repository
git clone https://github.com/infrabel/tp-lib
cd tp-lib
# Build all crates
cargo build --workspace
# Run tests
cargo test --workspace
# Run benchmarks
cargo bench --workspaceUse Docker to run the CLI without installing Rust:
# Build production image
docker build -t tp-lib:latest .
# Run with mounted data directory
docker run --rm -v $(pwd)/data:/data tp-lib:latest \
--gnss-file /data/gnss.csv \
--crs EPSG:4326 \
--network-file /data/network.geojson \
--output-format csv > output.csv
# Or use docker-compose
docker-compose up tp-cliRun the complete test suite including CRS transformation tests:
# Using docker-compose (recommended)
docker-compose run --rm test
# Or build and run test image directly
docker build -f Dockerfile.test -t tp-lib-test .
docker run --rm tp-lib-test
# Run specific tests
docker-compose run --rm test cargo test test_identity_transform
# Run only CRS transformation tests
docker-compose run --rm test cargo test crs_transform
# Interactive shell for debugging
docker run --rm -it tp-lib-test bashWhy Docker for tests?
- Complete test coverage: Runs all tests including CRS transformation tests
- Consistent environment: Same Rust version across all machines
- No local setup needed: No need to install Rust toolchain locally
- CI/CD ready: Use
Dockerfile.testin GitHub Actions or other CI systems
# CLI usage - CSV input/output
tp-cli --gnss-file train_positions.csv \
--crs EPSG:4326 \
--network-file railway_network.geojson \
--output-format csv > projected.csv
# GeoJSON output with custom warning threshold
tp-cli --gnss-file positions.csv \
--crs EPSG:4326 \
--network-file network.geojson \
--output-format json \
--warning-threshold 100.0 > projected.geojson
# Custom CSV column names
tp-cli --gnss-file data.csv \
--crs EPSG:4326 \
--network-file network.geojson \
--lat-col lat --lon-col lon --time-col timestampuse tp_lib_core::{parse_gnss_csv, parse_network_geojson, RailwayNetwork};
use tp_lib_core::{project_gnss, ProjectionConfig};
fn main() -> Result<(), Box<dyn std::error::Error>> {
// Load railway network from GeoJSON
let netelements = parse_network_geojson("network.geojson")?;
let network = RailwayNetwork::new(netelements)?;
// Load GNSS positions from CSV
let positions = parse_gnss_csv(
"gnss.csv",
"EPSG:4326",
"latitude",
"longitude",
"timestamp"
)?;
// Project onto network with default config (50m warning threshold)
let config = ProjectionConfig::default();
let projected = project_gnss(&positions, &network, &config)?;
// Use results
for pos in projected {
println!(
"Position at {}m on netelement {} (accuracy: {:.2}m)",
pos.measure_meters,
pos.netelement_id,
pos.projection_distance_meters
);
}
Ok(())
}- Workspace structure with tp-core, tp-cli, tp-py crates
- Cargo.toml configuration for workspace and dependencies
- Git repository initialization with .gitignore
- Directory structure (models, projection, io, crs, temporal)
- Error types (ProjectionError enum with thiserror)
- Data models (GnssPosition, Netelement, ProjectedPosition)
- Basic validation (latitude/longitude ranges, timezone presence)
- Module structure and public API exports
- Unit tests for all models
- Test fixtures and integration test framework
- Geometric Projection (T026-T028): ClosestPoint algorithm, measure calculation, 8 unit tests
- Spatial Indexing (T029-T031): R-tree implementation, O(log n) nearest-neighbor, 3 unit tests
- Input Parsing (T032-T035): CSV/GeoJSON readers with Polars/geojson crates, 3 integration tests
- Main Pipeline (T036-T040): RailwayNetwork struct, project_gnss() function, 1 end-to-end test
- Output Writers (T041-T042): CSV/GeoJSON serialization, 2 integration tests
- CLI Interface (T043-T047): clap argument parsing, validation, exit codes, help documentation
- Integration Tests (T048): Full pipeline test with 3 GNSS positions × 2 netelements
- Configuration (T049): ProjectionConfig with warning threshold and CRS transform flag
Result: Fully functional CLI and library with 28 passing tests
- Documentation (T050-T053): Rustdoc comments, README files
- Performance Benchmarks (T054-T056): Criterion benchmarks, naive vs optimized
- Python Bindings (T057-T060): PyO3 wrappers, error conversion, pytest tests
- Additional Testing (T061-T064): Contract tests, GNSS validation, CRS transform tests, CLI integration tests
- Structured Logging (T065-T066): Tracing instrumentation, subscriber configuration
- Target: < 10 seconds for 1000 GNSS positions × 50 netelements (SC-001)
- Memory: Handles 10,000+ positions without exhaustion (SC-006)
- Accuracy: 95% of positions within 2m projection distance (GPS quality dependent)
- R-tree Complexity: O(log n) nearest-neighbor search
GNSS CSV:
latitude,longitude,timestamp,altitude,hdop
50.8503,4.3517,2025-12-09T14:30:00+01:00,100.0,2.0
- RFC3339 timestamps with timezone (+HH:MM format required)
- CRS must be specified via
--crsflag - Column names configurable with
--lat-col,--lon-col,--time-col
Railway Network GeoJSON:
{
"type": "FeatureCollection",
"features": [
{
"type": "Feature",
"properties": { "id": "NE001", "crs": "EPSG:4326" },
"geometry": {
"type": "LineString",
"coordinates": [
[4.35, 50.85],
[4.36, 50.86]
]
}
}
]
}- LineString geometries (track centerlines)
- Unique
idproperty per netelement crsproperty with EPSG code
"Large projection distance" warnings:**
Indicates GNSS position is far from nearest track (> threshold). Possible causes:
- GPS inaccuracy or poor signal quality
- Train on parallel track not in network
- Missing netelement in railway network
- CRS mismatch between GNSS and network
- Track geometry outdated or incorrect
Adjust threshold with --warning-threshold flag or investigate data quality.
"No Python 3.x interpreter found" build error:
Building with default features requires Python for PyO3 bindings. Disable with:
cargo build --no-default-featuresOr install Python 3.12+ and ensure it's in your PATH.
- Windows Build Dependencies: Requires MSVC toolchain or mingw-w64 for some native dependencies
- Python Bindings: Requires Python 3.12+ installed (excluded from tp-py crate builds by default)
TP-Lib uses proj4rs, a pure Rust implementation of PROJ.4, for coordinate reference system transformations. This eliminates system dependencies and enables cross-platform compatibility.
Key Features:
- Pure Rust: No external C libraries required (libproj, sqlite3, etc.)
- Zero system dependencies: Works on Windows, Linux, macOS without installation
- EPSG support: Uses
crs-definitionscrate for EPSG code lookup - WASM compatible: Can be used in browser environments
- Always enabled: CRS transformations are available by default
Supported Transformations:
TP-Lib has been tested with Belgian railway coordinate systems:
- EPSG:4326 (WGS84) ↔ EPSG:31370 (Belgian Lambert 72)
- EPSG:4326 (WGS84) ↔ EPSG:3812 (Belgian Lambert 2008)
- Any EPSG codes supported by crs-definitions
Usage:
use tp_lib_core::crs::CrsTransformer;
use geo::Point;
// Create transformer (EPSG codes or PROJ strings)
let transformer = CrsTransformer::new(
"EPSG:4326".to_string(),
"EPSG:31370".to_string()
)?;
// Transform point (automatic degree/radian conversion)
let wgs84_point = Point::new(4.3517, 50.8503);
let lambert_point = transformer.transform(wgs84_point)?;Technical Details:
- proj4rs automatically handles radian/degree conversions for geographic CRS
- EPSG codes are resolved to PROJ strings using the crs-definitions crate
- Custom PROJ strings can be used directly instead of EPSG codes
- Transformation accuracy matches PROJ for standard 2D transformations
Limitations:
- proj4rs implements PROJ.4 API (2D transformations only)
- No 3D/4D or orthometric transformations
- Grid shift support is experimental
- For complex geodetic requirements, consider using PROJ directly
Online: https://matdata-eu.github.io/tp-lib/
The documentation is automatically built and deployed on every push to main. It includes:
- tp-core: Core library API with examples
- tp-cli: Command-line interface documentation
- tp-py: Python bindings API reference
Build locally:
# Generate documentation for all workspace crates
cargo doc --no-deps --workspace
# Open in browser (on Windows)
start target/doc/index.html
# Open in browser (on Linux/macOS)
open target/doc/index.html # macOS
xdg-open target/doc/index.html # LinuxThis project uses automated workflows for continuous integration and deployment:
- 🔄 Continuous Integration: Automated testing, linting, and security checks on every push
- 📦 crates.io Publishing: Automatic release to Rust package registry
- 🐍 PyPI Publishing: Automatic release to Python package index
- 📚 Documentation Deployment: Auto-deployed to GitHub Pages
See CI/CD Workflows Documentation for details on:
- Build and test automation
- Release process and version management
- Security and license validation
- Publishing to crates.io and PyPI
- Documentation deployment
This project follows the TP-Lib Constitution v1.1.0 principles:
- ✅ I. Library-First: Single unified library with quality external dependencies
- ✅ II. CLI Mandatory: Command-line interface for all functionality
- ✅ III. High Performance: Apache Arrow, R-tree spatial indexing
- ✅ IV. TDD: Test-driven development with FIRST TEST validation
- ✅ V. Full Coverage: Comprehensive test suite (unit, integration, property-based)
- ✅ VI. Timezone Awareness: DateTime for all timestamps
- ✅ VII. CRS Explicit: All coordinates include CRS specification
- ✅ VIII. Error Handling: Typed errors with thiserror, fail-fast validation
- ✅ IX. Data Provenance: Preserve original GNSS data, audit logging
- ✅ X. Integration Flexibility: Rust API + CLI + Python bindings
This project follows strict TDD workflow:
- Write test first (RED)
- Implement minimum code to pass (GREEN)
- Refactor while keeping tests green
See CONTRIBUTING.md for guidelines.
Apache License 2.0 - See LICENSE for details
TP-Lib Contributors - GitHub Issues