Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 5 additions & 5 deletions normflow/flows/normalization.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,8 +14,8 @@ class ActNorm(AffineConstFlow):

def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.data_dep_init_done_cpu = torch.tensor(0.)
self.register_buffer('data_dep_init_done', self.data_dep_init_done_cpu)
# self.data_dep_init_done_cpu = torch.tensor(0.)
self.register_buffer('data_dep_init_done', torch.tensor(0.))

def forward(self, z):
# first batch is used for initialization, c.f. batchnorm
Expand All @@ -24,7 +24,7 @@ def forward(self, z):
s_init = -torch.log(z.std(dim=self.batch_dims, keepdim=True) + 1e-6)
self.s.data = s_init.data
self.t.data = (-z.mean(dim=self.batch_dims, keepdim=True) * torch.exp(self.s)).data
self.data_dep_init_done = torch.tensor(1.)
self.data_dep_init_done[...] = 1.
return super().forward(z)

def inverse(self, z):
Expand All @@ -34,7 +34,7 @@ def inverse(self, z):
s_init = torch.log(z.std(dim=self.batch_dims, keepdim=True) + 1e-6)
self.s.data = s_init.data
self.t.data = z.mean(dim=self.batch_dims, keepdim=True).data
self.data_dep_init_done = torch.tensor(1.)
self.data_dep_init_done[...] = 1.
return super().inverse(z)


Expand All @@ -55,4 +55,4 @@ def forward(self, z):
std = torch.std(z, dim=0, keepdims=True)
z_ = (z - mean) / torch.sqrt(std ** 2 + self.eps)
log_det = torch.log(1 / torch.prod(torch.sqrt(std ** 2 + self.eps))).repeat(z.size()[0])
return z_, log_det
return z_, log_det
6 changes: 3 additions & 3 deletions normflow/flows/reshape.py
Original file line number Diff line number Diff line change
Expand Up @@ -101,17 +101,17 @@ def __init__(self):
super().__init__()

def forward(self, z):
log_det = 0
log_det = z.new_tensor(0)
s = z.size()
z = z.view(s[0], s[1] // 4, 2, 2, s[2], s[3])
z = z.permute(0, 1, 4, 2, 5, 3).contiguous()
z = z.view(s[0], s[1] // 4, 2 * s[2], 2 * s[3])
return z, log_det

def inverse(self, z):
log_det = 0
log_det = z.new_tensor(0)
s = z.size()
z = z.view(*s[:2], s[2] // 2, 2, s[3] // 2, 2)
z = z.permute(0, 1, 3, 5, 2, 4).contiguous()
z = z.view(s[0], 4 * s[1], s[2] // 2, s[3] // 2)
return z, log_det
return z, log_det