Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
137 changes: 137 additions & 0 deletions examples/singa_peft/examples/model/rbm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,137 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================
from __future__ import division
from __future__ import print_function
from builtins import range

import numpy as np
import os
import sys
import gzip
import argparse
try:
import pickle
except ImportError:
import cPickle as pickle

from singa import opt
from singa import device
from singa import tensor


def load_train_data(file_path):
f = gzip.open(file_path, 'rb')
if sys.version_info.major > 2:
train_set, valid_set, test_set = pickle.load(f, encoding='latin1')
else:
train_set, valid_set, test_set = pickle.load(f)
traindata = train_set[0].astype(np.float32)
validdata = valid_set[0].astype(np.float32)
print(traindata.shape, validdata.shape)
return traindata, validdata


def train(data_file, use_gpu, num_epoch=10, batch_size=100):
print('Start intialization............')
lr = 0.0005 # Learning rate
weight_decay = 0.0002
hdim = 1000
vdim = 784
tweight = tensor.Tensor((vdim, hdim))
tweight.gaussian(0.0, 0.1)
tvbias = tensor.from_numpy(np.zeros(vdim, dtype=np.float32))
thbias = tensor.from_numpy(np.zeros(hdim, dtype=np.float32))
sgd = opt.SGD(lr=lr, momentum=0.9, weight_decay=weight_decay)

print('Loading data ..................')
train_x, valid_x = load_train_data(data_file)

if use_gpu:
dev = device.create_cuda_gpu()
else:
dev = device.get_default_device()

for t in [tweight, tvbias, thbias]:
t.to_device(dev)

num_train_batch = train_x.shape[0] // batch_size
print("num_train_batch = %d " % (num_train_batch))
for epoch in range(num_epoch):
trainerrorsum = 0.0
print('Epoch %d' % epoch)
for b in range(num_train_batch):
# positive phase
tdata = tensor.from_numpy(
train_x[(b * batch_size):((b + 1) * batch_size), :])
tdata.to_device(dev)
tposhidprob = tensor.mult(tdata, tweight)
tposhidprob = tposhidprob + thbias
tposhidprob = tensor.sigmoid(tposhidprob)
tposhidrandom = tensor.Tensor(tposhidprob.shape, dev)
tposhidrandom.uniform(0.0, 1.0)
tposhidsample = tensor.gt(tposhidprob, tposhidrandom)

# negative phase
tnegdata = tensor.mult(tposhidsample, tweight.T())
tnegdata = tnegdata + tvbias
tnegdata = tensor.sigmoid(tnegdata)

tneghidprob = tensor.mult(tnegdata, tweight)
tneghidprob = tneghidprob + thbias
tneghidprob = tensor.sigmoid(tneghidprob)
error = tensor.sum(tensor.square((tdata - tnegdata)))
trainerrorsum = error + trainerrorsum

tgweight = tensor.mult(tnegdata.T(), tneghidprob) \
- tensor.mult(tdata.T(), tposhidprob)
tgvbias = tensor.sum(tnegdata, 0) - tensor.sum(tdata, 0)
tghbias = tensor.sum(tneghidprob, 0) - tensor.sum(tposhidprob, 0)

sgd.apply('w', tweight, tgweight)
sgd.apply('vb', tvbias, tgvbias)
sgd.apply('hb', thbias, tghbias)

print('training erroraverage = %f' %
(tensor.to_numpy(trainerrorsum) / train_x.shape[0]))

tvaliddata = tensor.from_numpy(valid_x)
tvaliddata.to_device(dev)
tvalidposhidprob = tensor.mult(tvaliddata, tweight)
tvalidposhidprob = tvalidposhidprob + thbias
tvalidposhidprob = tensor.sigmoid(tvalidposhidprob)
tvalidposhidrandom = tensor.Tensor(tvalidposhidprob.shape, dev)
tvalidposhidrandom.uniform(0.0, 1.0)
tvalidposhidsample = tensor.gt(tvalidposhidprob, tvalidposhidrandom)

tvalidnegdata = tensor.mult(tvalidposhidsample, tweight.T())
tvalidnegdata = tvalidnegdata + tvbias
tvalidnegdata = tensor.sigmoid(tvalidnegdata)

validerrorsum = tensor.sum(tensor.square((tvaliddata - tvalidnegdata)))
print('valid erroraverage = %f' %
(tensor.to_numpy(validerrorsum) / valid_x.shape[0]))


if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Train RBM over MNIST')
parser.add_argument('file', type=str, help='the dataset path')
parser.add_argument('--use_gpu', action='store_true')
args = parser.parse_args()

assert os.path.exists(args.file), 'Pls download the MNIST dataset from' \
'https://github.com/mnielsen/neural-networks-and-deep-learning/raw/master/data/mnist.pkl.gz'
train(args.file, args.use_gpu)